October 1987 Revised April 2002

CD4093BC Quad 2-Input NAND Schmitt Trigger

General Description

The CD4093B consists of four Schmitt-trigger circuits. Each circuit functions as a 2-input NAND gate with Schmitt-trigger action on both inputs. The gate switches at different points for positive and negative-going signals. The difference between the positive $\left(V_{T}^{+}\right)$ and the negative voltage

 (V_{T}^{-}) is defined as hysteresis voltage (V_{H}).

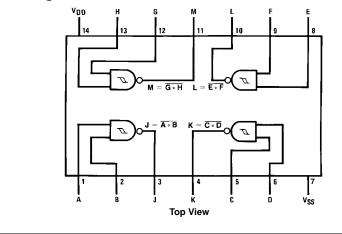
All outputs have equal source and sink currents and conform to standard B-series output drive (see Static Electrical Characteristics).

Features

- Wide supply voltage range: 3.0V to 15V
- Schmitt-trigger on each input
- with no external components
- Noise immunity greater than 50%
- Equal source and sink currents
- No limit on input rise and fall time
- Standard B-series output drive
- Hysteresis voltage (any input) T_A = 25°C

Typical $V_{DD} = 5.0V V_H = 1.5V$ $V_{DD} = 10V V_H = 2.2V$ $V_{DD} = 15V V_H = 2.7V$

Guaranteed $V_{H} = 0.1 V_{DD}$


Applications

- Wave and pulse shapers
- · High-noise-environment systems
- Monostable multivibrators
- Astable multivibrators
- NAND logic

Ordering Code:

Order Number	Package Number	Package Description
CD4093BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4093BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Connection Diagram

CD4093BC

Absolute Maximum Ratings(Note 1) (Note 2)

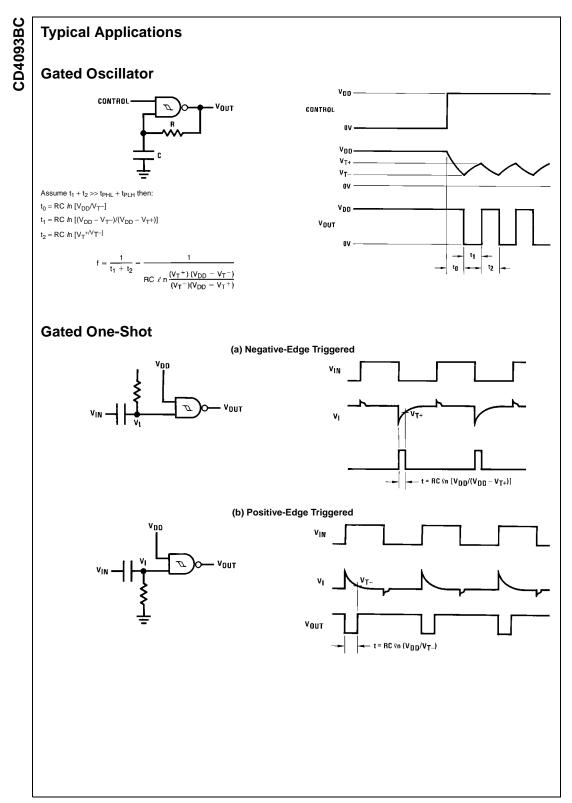
DC Supply Voltage (V _{DD})	-0.5 to $+18$ V _{DC}
Input Voltage (V _{IN})	–0.5 to V_{DD} +0.5 V_{DC}
Storage Temperature Range (T_S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

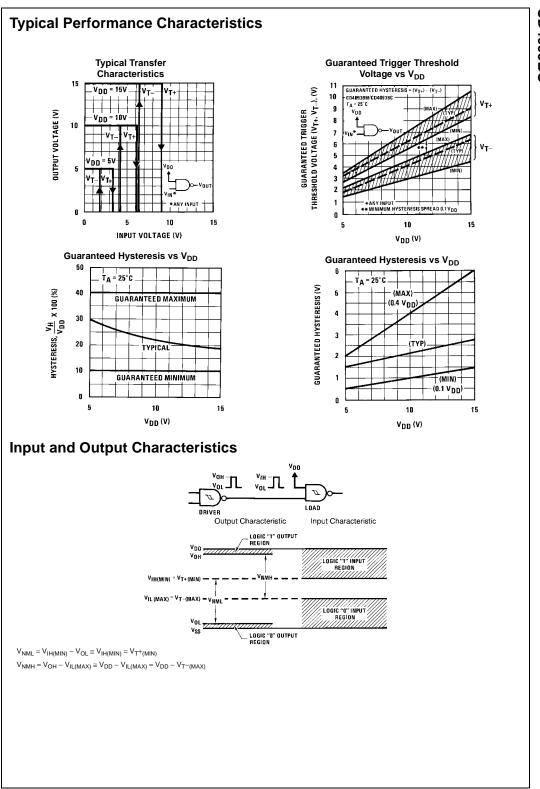
Recommended Operating Conditions (Note 2)

DC Supply Voltage (V_{DD}) Input Voltage (V_{IN}) 3 to 15 V_{DC} 0 to V_{DD} V_{DC}

conditions for actual device operation. Note 2: $V_{SS} = 0V$ unless otherwise specified.

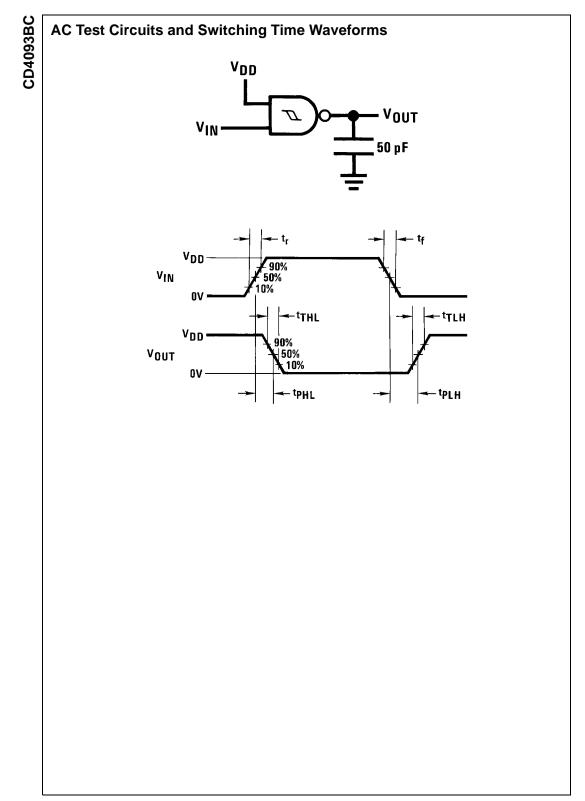
DC Electrical Characteristics (Note 2)

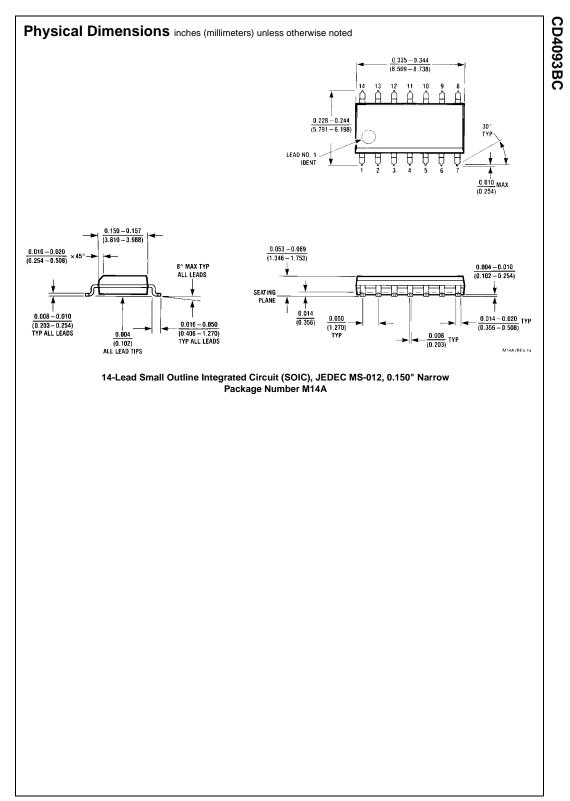

Cumber!	Devementer	0	-55	–55°C		+25°C			+125°C	
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$		0.25			0.25		7.5	
	Current	$V_{DD} = 10V$		0.5			0.5		15.0	μA
		$V_{DD} = 15V$		1.0			1.0		30.0	
V _{OL}	LOW Level	$V_{IN} = V_{DD,} I_O < 1 \ \mu A$								
0	Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$V_{IN} = V_{SS}, I_O < 1 \ \mu A$								
	Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
	Negative-Going Threshold	I _O < 1 μA								
	Voltage (Any Input)	$V_{DD} = 5V, V_{O} = 4.5V$	1.3	2.25	1.5	1.8	2.25	1.5	2.3	
		$V_{DD} = 10V, V_{O} = 9V$	2.85	4.5	3.0	4.1	4.5	3.0	4.65	V
		$V_{DD} = 15V, V_{O} = 13.5V$	4.35	6.75	4.5	6.3	6.75	4.5	6.9	
V _T +	Positive-Going Threshold	I _O < 1 μA								
	Voltage (Any Input)	$V_{DD} = 5V, V_{O} = 0.5V$	2.75	3.6	2.75	3.3	3.5	2.65	3.5	
		$V_{DD} = 10V, V_{O} = 1V$	5.5	7.15	5.5	6.2	7.0	5.35	7.0	V
		$V_{DD} = 15V, V_O = 1.5V$	8.25	10.65	8.25	9.0	10.5	8.1	10.5	
V _H	Hysteresis (V _T + - V _T -)	$V_{DD} = 5V$	0.5	2.35	0.5	1.5	2.0	0.35	2.0	
	(Any Input)	$V_{DD} = 10V$	1.0	4.3	1.0	2.2	4.0	0.70	4.0	V
		$V_{DD} = 15V$	1.5	6.3	1.5	2.7	6.0	1.20	6.0	
I _{OL}	LOW Level Output	$V_{IN} = V_{DD}$								
	Current (Note 3)	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
		$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output	$V_{IN} = V_{SS}$								
	Current (Note 3)	$V_{DD} = 5V$, $V_O = 4.6V$	-0.64		0.51	-0.88		-0.36		
		$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1	1	-10 ⁻⁵	-0.1	1	-1.0	
		V _{DD} = 15V, V _{IN} = 15V		0.1		10 ⁻⁵	0.1		1.0	μA

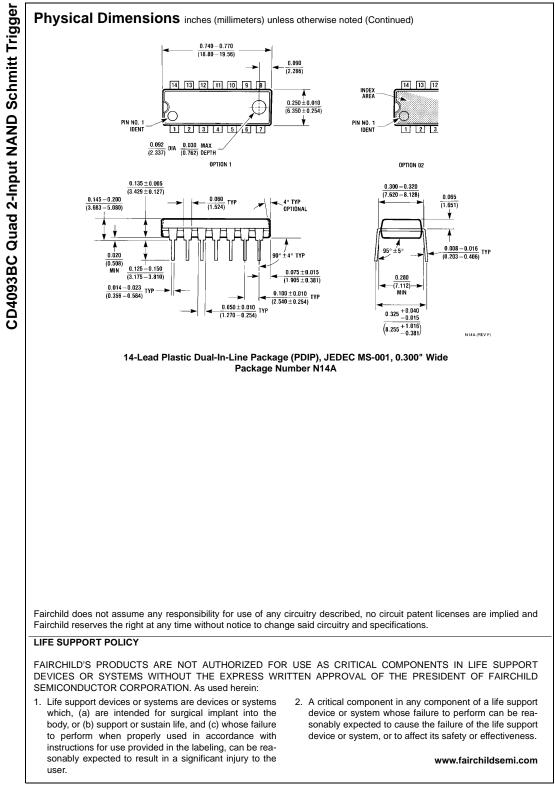

Note 3: I_{OH} and I_{OL} are tested one output at a time.

$T_A = 25^{\circ}C$, $C_L = 50 \text{ pF}$, $R_L = 200 \text{k}$, Input t_r , $t_f = 20 \text{ ns}$, unless otherwise specified							
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		300	450		
		$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		120	210	ns	
		$V_{DD} = 15V$		80	160		
t_{THL},t_{TLH}	Transition Time	$V_{DD} = 5V$		90	145		
		$V_{DD} = 10V$ $V_{DD} = 15V$		50	75	ns	
		$V_{DD} = 15V$		40	60		
C _{IN}	Input Capacitance	(Any Input)		5.0	7.5	pF	
CPD	Power Dissipation Capacitance	(Per Gate)		24		pF	

Note 4: AC Parameters are guaranteed by DC correlated testing.


CD4093BC





CD4093BC

www.fairchildsemi.com

www.fairchildsemi.com